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1. Introduction 

 

Programming Models have emerged as the critical topic for making progress in the 

applications of large-scale computing to scientific problems.   They stand at the 

intersection of the roads to productivity of programmers and performance of the 

machines they use.   The Center for Programming Models for Scalable Parallel 

Computing (Pmodels) comprises researchers at national laboratories and universities 

focusing on a fundamental problem facing high-performance computing today:  How will 

the application programs of the future be written so as to exploit the exiting directions in 

hardware architecture for new science?  For details on the project’s personnel, goals, and 

approach, see http://pmodels.mcs.anl.gov. 

 

2.  Recent Developments 

 

Several developments in the overall environment for this project have taken place since 

the project started. 

 

• New leadership-class computers have been installed at Argonne, Oak Ridge and 

NERSC that bring DOE’s computing power into the petaflop range. These 

machines all support the message-passing model specified by the MPI standard 

but also have multiple cores per memory system, allowing more complex, 

multithreaded programming models. 

• INCITE awards of substantial blocks of time on those machines have enabled new 

science for those who can surmount the new scalability challenges with new 

applications or modifications to existing ones. 

• ERCAP awards to approximately 300 projects with 3000 users have been 

allocated on the NERSC machines.  These are typically more modest blocks of 

time than INCITE.  In addition to doing science with their computations, several 

projects will be scaling their codes in an effort to be considered for future INCITE 

scale projects. 

• A 5832-core SiCortex machine has been acquired at Argonne to support computer 

science research and scalability development (as opposed to production 

applications). The machine is available to all Pmodels participants. With six cores 

per node (more than the IBM and Cray leadership-class machines) and a Linux 

operating system, it supports both the OpenMP and explicit pthread approaches to 

multithreading 

• A new book on OpenMP has been published by one of the participants in this 

project. The OpenMP 3.0 version of the standard has recently appeared, with new 

features for HPC. 



• HPC vendors have announced plans for chips with large numbers of cores, 

generating concern about how application programming methods will need to 

evolve in order to exploit these cores.  

• The MPI Forum has been reconstituted and has begun meeting to modernize the 

existing MPI-2 standard and consider extensions and modifications appropriate to 

the latest developments in MPC hardware and software.  

 

A crosscutting theme in all these developments is the coming use of multithreaded and 

hybrid (message-passing or another model plus threads) programming approaches. In the 

Pmodels project, many of the accomplishments of the past year are related to this 

development. A summary follows; see the next section for details. 

 

• The interaction of multithreaded programs with the MPI library is being 

extensively explored at Argonne, and refinements are being added to the open-

source MPICH implementation in order to conduct the experiments necessary for 

research; provide a free, thread-safe MPI implementation to the thousands of 

MPICH users; and furnish high-performance, thread-safe code for vendors to use 

in their own MPI implementations. 

• The ARMCI library, which underlies the widely used Global Arrays model as 

well as some language efforts, has been adapted for multithreaded use at Pacific 

Northwest National Laboratory and Ohio State University. 

• Co-Array Fortran (CAF), as a Partitioned Global Address Space (PGAS) 

language has the potential for efficient execution on multicore processors; 

however, refinements to the language are needed to make it more expressive.  A 

variety of improvements have been made to the Rice CAF compiler to deal with 

multithreading and Rice is working with the J3 Fortran standards committee to 

refine the language. 

• Unified Parallel C (UPC), another PGAS language, has a second implementation 

for shared memory based on processes rather than threads.  The process-based 

implementation uses OS-supported shared memory and adds to interoperability 

with MPI applications that use multiple processes per shared memory node.  In 

addition the Berkeley UPC group implemented a cooperative threading library to 

provide latency-hiding support and demonstrated its use in a UPC implementation 

of the High Performance Linpack benchmark. 

• At the University of Houston, OpenMP as a shared-memory mode expressed in a 

well-developed and widely implemented language is being moved forward along 

two fronts:  (1) The Pmodels PI there is on the OpenMP ARB, which defines the 

standard itself; and (2) the Houston OpenMP research compiler, a branch of the 

Open64 compiler toolkit, has been augmented to provide deeper insight into the 

research issues connected to the use of OpenMP for HPC. 

• Titanium is another PGAS language particularly well adapted to use on multicore 

chips since it runs atop a hybrid shared and distributed memory runtime layer.  

Influenced by collaborations with the HPCS language efforts, the Titanium team 

at Berkeley has developed global view optimizations for Titanium, which will 

allow programs to be expressed more simply while still providing high 



performance.  They have also developed a tool to automatically detect certain 

performance scaling bugs and program analysis to detect data races. 

• At Ohio State University, we are extending the scalability of both MPI and Global 

Arrays over Infiniband clusters of multicore systems.  A further contribution is 

the task-parallel model for Global Array applications, as well as the XGA 

extension to the GA library. 

 

Details of these accomplishments and related work are presented in the next section, 

which is organized by institution. References as associated with each section separately. 

 

 

3.  Individual Contributions 

 

In this section we cover recent accomplishments from each of the participating 

institutions. 

 

3.1 Argonne National Laboratory – William Gropp, Ewing Lusk, Rajeev Thakur 

 

Work at Argonne has focused on the interaction of MPI with theads and on self-

consistent MPI performance requirements. 

 

3.1.1 Test Suite for Evaluating Performance of MPI Implementations That Support 

MPI_THREAD_MULTIPLE 

 

MPI implementations that support the highest level of thread safety for user programs, 

MPI_THREAD_MULTIPLE, are becoming increasingly common. As a result, users are 

able to write multithreaded MPI programs that make MPI calls concurrently from 

multiple threads. Thread safety does not come for free, however, because the 

implementation must protect certain data structures or parts of the code with mutexes or 

critical sections. Developing a thread-safe MPI implementation is a fairly complex task, 

and the implementers must make several design choices, both for correctness and for 

performance [Gropp06]. To simplify the task, implementations often focus on correctness 

first and performance later (if at all). As a result, even though an MPI implementation 

may support multithreading, its performance may be far from optimized. Users, therefore, 

need a way to determine how efficiently an implementation can support multiple threads.  

Similarly, as implementers experiment with a potential performance optimization, they 

need a way to measure the outcome. (We ourselves face this situation in MPICH2.) To 

meet these needs, we have developed a number of performance tests that are motivated 

by typical application scenarios. These tests cover the overhead of providing the 

MPI_THREAD_MULTIPLE level of thread safety for user programs, the amount of 

concurrency in different threads making MPI calls, the ability to overlap communication 

with computation, and other features. We obtained performance results with this test suite 

on several platforms (Linux cluster, Sun and IBM SMPs) and MPI implementations 

(MPICH2, Open MPI, IBM, and Sun). This work was published at Euro PVM/MPI 2007 

and was selected as an outstanding paper [Thakur07]. 

 



The Test Suite.  Users of threads in MPI often have the following expectations of the 

performance of threads, both those making MPI calls and those performing computation 

concurrently with threads that are making MPI calls. 

 

• The cost of thread safety, compared with lower levels of thread support, such as 

MPI_THREAD_FUNNELED, is relatively low. 

• Multiple threads making MPI calls, such as MPI_Send or MPI_Bcast, can make 

progress simultaneously. 

• A blocking MPI routine in one thread does not consume excessive CPU resources 

while waiting. 

 

Our tests are designed to test these expectations; in terms of the above categories, they 

are as follows: 

 

Cost of thread safety.  One simple test to measure MPI_THREAD_MULTIPLE 

overhead. 

 

• Concurrent progress Tests to measure concurrent bandwidth by multiple threads 

of a process to multiple threads of another process, as compared with multiple 

processes to multiple processes. Both point-to-point and collective operations are 

included. 

• Computation overlap Tests to measure the overlap of communication with 

computation and the ability of the application to use a thread to provide a 

nonblocking version of a communication operation for which there is no 

corresponding MPI call, such as nonblocking collectives or I/O operations that 

involve several steps. 

 

The entire test suite can be downloaded from http://www.mcs.anl.gov/~thakur/thread-

tests. 

 

We ran the tests on a GigE connected Linux cluster using MPICH2 and Open MPI and on 

Sun and IBM SMPs using Sun and IBM MPI implementations. The performance results 

indicate that the difference between the multithreaded and multiprocess performance is 

relatively small for both MPICH2 and Open MPI on the Linux cluster, with MPICH2 

performing better than Open MPI (less overhead). However, the multithreaded 

performance of IBM and Sun MPIs on a single SMP box is quite poor (see Figures 1 and 

2). Detailed performance results can be found in [Thakur2007]. 

 

 



 
 
Figure 1. Concurrent Latency Test on Sun and IBM SMPs. (Multiple threads communicating with 

multiple threads, or multiple processes communicating with multiple processes.) 

 

 

 
 
Figure 2. Concurrent Bandwidth Test on Sun and IBM SMPs. 

 

3.1.2  Self-Consistent MPI Performance Requirements 

 

For good reasons, MPI comes without a performance model and, apart from some 

“advice to implementers”, without any requirements or recommendations as to what a 

good implementation should satisfy regarding performance. The main reasons are that the 

implementability of the MPI standard should not be restricted to systems with specific 

interconnect capabilities and that implementers should be given maximum freedom in 

how to realize the various MPI constructs. The widespread use of MPI over an extremely 

wide range of systems, as well as the many existing and quite different implementations 

of the standard, show that this was a wise decision. 

 

However, users often complain about the poor performance of some of the MPI functions 

in MPI implementations and of the difficulty of writing code whose performance is 

portable. Solving this problem requires defining performance standards that MPI 



implementations are encouraged to follow. In collaboration with Jesper Larsson Traff 

from NEC Research Labs in Germany, we have defined some basic, intrinsic 

performance rules for MPI implementations. This work was published at Euro PVM/MPI 

2007 and was selected as an outstanding paper [Traff07]. 

 

The general principle behind the performance rules is that the library internal 

implementation of any arbitrary MPI function in a given MPI library should not perform 

any worse than an external (user) implementation of the same functionality in terms of (a 

set of) other MPI functions. For example: 

 

• Subdividing messages into multiple messages should not reduce the 

communication time. 

• Replacing an MPI function with a similar function that provides additional 

semantic guarantees should not reduce the communication time. 

• Replacing a specific (collective) MPI operation with a more general operation by 

which the same functionality can be expressed should not reduce communication 

time. 

• Replacing a (collective) operation by a sequence of other operations 

implementing the same functionality should not reduce communication time. 

• A virtual process topology should not make communication between all pairs of 

neighboring processes slower than communication between the same processes in 

any other communicator. 

 

In [Traff07,Traff08], we have defined these rules more formally. These rules can be 

automatically verified by benchmarks and performance evaluation tools, thereby giving 

both users and implementers insight into the behavior of an MPI implementation and 

indicating areas needing improvement. We also provided examples where some of these 

rules are being violated. For example, in Figure 3, a user with a 1500-byte message will 

achieve better performance on this system by sending two 750-byte messages.  This 

example shows one of the implementation features that competes with performance 

portability---in this case, the use of limited message buffers. 

 

 
 
Figure 3. Measured performance of short messages on IBM BG/L. Note the large jump around 

1024 bytes; this is the transition from eager to rendezvous protocol in the MPI implementation. 

 



 

3.1.3 Scalable Tools Communication Infrastructure 

 

We have been working on the Scalable Tools Communication Infrastructure (STCI) 

initiative.  The purpose of the STCI initiative is to develop a common, scalable, high-

performance communication infrastructure to support development tools on emerging 

peta- and exa-scale high performance computing systems.  Members of the initiative 

include tool developers, middleware developers and system software developers from 

industry, academia and national labs.  Since our initial meeting in July, we have 

identified expected use cases and requirements, and have designed the core architecture.  

We are currently defining APIs for the various components and beginning 

implementation. 
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3.2 University of California, Berkeley – Katherine Yelick 

 

3.2.1 Support for Dynamic Multithreading in PGAS Langauges 

 

Much of high-end scientific computation is organized into a bulk-synchronous model 

having distinct phases of communication and computation.  This has advantages in code 



simplicity, but it not a good fit to some algorithms, and even something a regular at dense 

matrix factorization can be unnecessarily constrained by the bulk-synchrnout model.   

The Berkeley team developed a data-driven implementation of LU factorization built on 

the UPC language, which has one-sided communication via its global address space, 

locality control through the partitioning of the address space, and a static parallelism 

model with barrier synchronization which lends itself well to a bulk-synchronous style.  

They explored extensions of the basic UPC execution model to better support problems 

such as matrix factorization with interesting dependence patterns, and evaluated them on 

LU factorization. 

The long term goal of our project is to develop highly optimized matrix factorization 

routines for both dense and sparse matrices.  In addition, the UPC community is 

exploring possible extensions to UPC to improve productivity and performance.  

Two of the most common parallel LU factorization codes for distributed memory 

machines are from the ScaLAPACK library and the High Performance Linpack (HPL) 

benchmark used in determining the Top 500 list.  Both of these codes are written for 

portability and scalability using the two-sided message passing model in MPI, and are 

written to keep the processors somewhat synchronized in order to manage the matching 

of sends and receives and the associated buffer space for messages.  The UPC code is 

designed with latency hiding as primary goal, and we explore the programmability and 

performance benefits of UPC’s one-sided communication model, coupled with a dynamic 

parallelism model.  The experience with this algorithm highlights some of the subtle 

pitfalls of dynamic threading and the need for application-level control for thread 

management, which is relevant to the HPCS languages (X10, Forress, and Chapel) as 

well as existing libraries like Charm++ or (if augmented with locality control) Cilk.  

Scheduling decisions must be made to balance the needs of parallel progress, memory 

utilization, and cache performance. 

Several challenges arise in using a highly parallel dataflow view of the algorithm as we 

do.  First, because we want to run on hundreds or even thousands of processors and 

across clusters, locality is critical.  We use UPC’s global address space to statically 

distribute blocks of the input matrix and build scheduling queues for the tasks associated 

with each block; both the matrix blocks and queues are remotely accessed through the 

global address space.  Second, the multithreading support that is needed to expose 

available parallelism can have a significant runtime cost; we explore several different 

strategies for implementing fast user-level threads.  Third, while the algorithm is highly 

dynamic, control over task scheduling is critical and non-obvious.  For highest 

performance we use an application-specific scheduling policy to ensure proper 

prioritization.  Fourth, as with any attempt to expose all available parallelism to the 

runtime layer, memory resources can easily be strained, and deadlock may result in a 

constrained memory environment, because tasks that have been allocated may not be able 

to run until other unallocated tasks complete.  We use a novel dependence-constrained 

task allocation mechanism to avoid deadlock.  Finally, we incorporate some of the best-

practice optimizations from prior work, including recursive algorithms to increase 

granularity and the combining certain tasks to improve local task size and thereby boost 

serial performance.  We found each of these optimizations necessary to high 

performance.  



 

Figure 1. Dependencies in LU factorization:  

 

3.2.2 Automated Performance Analsysis for PGAS Langauges 

 

One of the most attractive features of PGAS languages is the ability to access remote 

memory implicitly through shared memory reads and writes. But this benefit does not 

come without a cost. It is very difficult to spot communication by looking at the program 

text, since remote reads and writes the same as local reads and writes at the execution 

point—one needs to examine the types to see potential communication. This makes 

manual communication performance debugging difficult. The Titanium group developed  

tool called ti-trend-prof that can do automatic performance debugging using only 

program traces from small processor configurations and small input sizes in Titanium. ti-

trend-prof presents trends to the programmer to help spot possible communication 

performance bugs even for processor configurations and input sizes that have not been 

run, in particular scalability problems when communication is not scaling as expected. 

We used titrend-prof on two of the largest Titanium applications, adaptive mesh 

refinement and heart simulation, and found bugs that would have taken days to discover 

in under an hour.  In one case the performance bug (a missing type annotation of “local”) 

was inadvertently introduced in other routine software maintenance and did indeed take 

days to discover prior to the development of this tool. 

 

3.2.3 Hierarchical Pointer Analysis for Titanium 

 

Parallel machines are often built with hierarchical memory systems, with local caches or 

explicitly managed local stores associated with each process. For example, partitioned 

global address space (PGAS) languages may run on shared memory, distributed memory 

machines or hybrids, with the language runtime providing the illusion of shared memory 

through the use of wide pointers (that store both a processor node number and an 

address), distributed arrays, and implicit communication to access such data. Hierarchies 

also exist within processors in the form of caches and local stores. For example, the Cell 

game processor has a local store associated with each of the SPE processors, which can 

be accessed by other SPEs through memory move (DMA) operations. Additional levels 

of partitioning are also possible, such as partitioning memory in a computational grid into 

clusters, each of which is partitioned into nodes, as show below. 

 

some edges  omitted 



 
 

In Titanium, threads are arranged in the following three-level hierarchy: 

• Level 1: an individual thread 

• Level 2: threads within the same physical address space, such as a UNIX process 

• Level 3: all threads 

The distance between two threads is the lowest level of the hierarchy at which both 

threads are located. Thus, the distance between a thread and itself is 1, between two 

different threads in the same physical address space is 2, and between threads in different 

physical address spaces is 3. 

 

We produced a pointer analysis for a simple parallel language with a generic machine 

hierarchy, called Ti. The analysis determines not only which memory locations can be 

referenced by each variable and memory location, but also on which threads the memory 

can be located. Dynamic memory locations are represented using abstract locations, 

which consist of an allocation site and a level in the machine hierarchy. The abstract 

location (l, n) can only refer to memory allocated at the allocation site labeled l and on a 

thread whose distance is at most n. 

 

For every variable and abstract location in a program, the analysis computes which 

abstract locations they can refer to. The analysis has special inference rules for each 

construct in Ti: variables, memory allocations, dereferences, type conversions, 

broadcasts, variable assignments, and dereferencing assignments. These rules are based 

on the operational semantics for each construct, which we also defined. We proved that 

the inference rules are sound and provided an algorithm that uses these rules to perform 

the pointer analysis. 

 

We implemented three versions of the hierarchical pointer analysis in Titanium. They are 

a single-level analysis that does not distinguish between the three levels in the memory 

hierarchy, a two-level analysis that combines levels 2 and 3, and a three-level analysis 

that separates all the levels in the Titanium memory hierarchy. The three-level analysis 

only takes 10% longer than the single-level analysis, despite the fact that it is much more 

accurate. 

 

One of the main challenges in shared memory parallel programming is avoiding data 

races, which occur when two threads access the same variable simultaneously and at least 



one of them performs a write operation.  Data races usually lead to nondeterministic 

program behavior and are often programming errors.  A great deal of effort has gone into 

the automatic discovery of data races using either static analysis or runtime tools.  The 

static analysis techniques are necessarily conservative.  Below are the data for our 

concurrency analysis, combined with a type-based alias analysis on several scientific 

Titanium benchmarks.   

gas: AMR code for gas dynamics 

gsrb: Red-Black Gauss-Seidel relaxation 

lu-fact: LU factorization 

pps: CFD elliptic solver for an infinite 

domain 

spmv: Sparse Matrix-Vector 

multiplication 

 
Number of Data Races Detected 

 base concur feasible 

gas 1410 1408 228 

gsrb 33 18 18 

lu-fact 8 5 3 

pps 82 82 32 

spmv 17 4 2  
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The data shows that importance of our most sophisticated concurrency analysis based on 

feasible execution paths.  This analysis is probably still not accurate enough to use in a 

user tool as the reported races are not real program bugs, and so would be viewed as false 

positives.  In future work we plan to incorporate an array alias analysis to further reduce 

conflict edges.  
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3.3 University of Houston – Barbara Chapman 

 

3.3.1  Overview of OpenMP Research at UH 

 

In this project the UH team directed by Dr. Barbara Chapman is working with partners 

and hardware vendors to increase the scalability and applicability of OpenMP for multi-

core platforms and distributed memory systems by focusing on language extensions, 

compiler optimizations, as well as runtime library support. We are also collaborating with 

our parteners to explore OpenMP's interoperability with other programming models and 

ensure that it can be deployed with each of the message passing libraries and PGAS 

models. We are working on providing support for users to determine suitable approaches 

for exploiting hybrid models for their applications. Our work is implemented within the 

robust OpenUH compiler infrastructure which serves as an indispensable test bed for 

ensuring the success of our research.  

 

In this year, we worked in introducing new OpenMP language features to address the 

scalability and to facilitate the development of hybrid MPI and OpenMP programs. We 

enhanced the OpenUH compiler infrastructure by improving its portability, and we are 



currently working on implementing OpenMP 3.0 features. We also continued our initial 

PModels work on improving the OpenMP translation strategy for execution on clusters, 

particularly for exploring how to handle sequential parts translation efficiently. We 

explored the existing cost model within our compiler and implemented a novel OpenMP 

cost model by considering OpenMP and multi-core architecture characteristics. We also 

refined our performance modeling for MPI and OpenMP programs taking both static and 

dynamic information into account.  

 

We took part in the OpenMP 3.0 specification weekly discussion meetings and the face-

to-face meeting in IWOMP07 Beijing. We have contributed our results to the OpenMP 

Architecture Review Board (ARB) and have collaborated in language committees of the 

ARB to discuss future OpenMP features for multi-core programming. We have 

successfully organized the HPCC07 conference at Houston and presented our work in a 

variety of conferences and workshops including an invited talk in Parco 07 for “OpenMP 

in the Multi-Core Era”.  The SiCortex workshop held at Argonne recently gave us a good 

opportunity to explore the latest multi-core architectures and collaborate with our 

partners to explore hybrid programming models. Also the book “Using OpenMP” [3], 

authored by Chapman et al., was published by the MIT press this year and described how 

best to write parallel programs with OpenMP based on our experiences.  

 

3.3.2  OpenMP for Multi-Core Architectures 

 

OpenMP continues to gain more acceptance as a widely used parallel programming 

model in the shared memory multi-core and many-core systems. Large-scale  computing 

platforms are built on top of multi-core processors. As a result, the new levels of 

architectural parallelism and new types of resource contention introduced require further 

exploration into the existing programming models, compiler, and runtime tools.  We need 

to adapt OpenMP to support the creation of efficient programs, including MPI+OpenMP 

hybrid program development, that utilize the power of these systems.  For example, the 

locality of operations that execute in concurrent threads becomes critical in multi-core 

systems, because threads must compete for shared resources and memory per thread is 

limited.  While OpenMP provides features for assigning  work to user-level threads, there 

currently is no way to specify the subgrouping of these threads, the mapping of threads to 

the hardware, or data placement.  Language features are therefore needed to enable a 

more flexible assignment of work to threads and permit a careful mapping of threads to 

the target platform.  To enable better control of locality, and to facilitate the creation of 

efficient hybrid MPI+OpenMP programs, we have defined and implemented the concept 

of subteams [4] in OpenMP. The subteam extension is inspired by MPI's group and 

topology concepts. These ideas can be used to parallelize multi-dimensional loop nests 

for large thread counts, to describe a variety of execution scenarios including pipelining, 

as well as to flexibly assign work across a system with non-uniform resource sharing.  

We have successfully implemented and tested the subteam concept [6] in the OpenUH 

compiler. 

 



 
Figure 1: Comparison of subteams with equivalent versions of BT multizone 

benchmark. 

 

Our experiments show that the subteam concept is easy to use and can greatly enhance 

the scalability of code. Together with colleagues at NASA Ames Research Center, we 

have evaluated the performance of four versions of the NAS BT Multi-zone benchmarks 

using OpenMP nested parallelism (2 versions), OpenMP with the subteam 

implementation, and hybrid MPI+OpenMP [8] on an SGI Altix system with 512 Itanium 

2 processors. Figure 1 presents the results.  Our experiments demonstrated that the 

subteam and hybrid versions are close in performance since both enable a similar data 

layout and reuse the data efficiently.  Moreover, the code for the subteam version turned 

out to be much simpler than the other versions.  

 

3.3.4  Enhancing the OpenUH Compiler 

 

We have further enhanced the portability and robustness of the OpenUH compiler 

framework [12, 11] by providing more backends to support a variety of architectures. 

OpenUH is a robust OpenMP 2.5 compiler based upon the open-source Open64 compiler 

framework, and it provides state-of-the-art optimizations for Fortran and C/C++. 

OpenUH is currently used in a number of research projects around the world. We are 

currently implementing the new features in OpenMP 3.0 and plan to release it to the 

community in the next year to provide researchers a solid test bed to experiment with the 

OpenMP 3.0 features. We are also working on the alternative OpenMP compiler 

translation approach to transform an OpenMP code to a collection of sequential tasks and 

a task graph that indicates their execution constraints [2]. This approach forms the basis 

of OpenMP 3.0 implementation, and can potentially reduce synchronization costs and 

improve data locality.  

 

3.3.5  Cost Model for OpenMP on Multi-cores 

 

We have extended the cost model in OpenUH to effectively estimate the execution cost 

of OpenMP programs during compile time on multi-core architectures. An OpenMP cost 

model is an analytical model that estimates the cost of executing (regions of) OpenMP 

programs, typically in terms of clock cycles. Such a model could guide compiler 



transformations, enhance adaptive runtime support, and assist performance analysis. 

However, existing cost models for OpenMP make over-simplifying assumptions and 

ignore many software and hardware details. We have designed and implemented a novel 

compile-time cost model [10, 9] for OpenMP that explicitly considers thread scheduling 

policies, synchronization overheads, cache configuration, and much more. The resulting 

model is able to provide sufficiently accurate cost estimates to support the optimization 

process with reasonable overheads.  We are exploring extensions to the model to take 

into account multi-core resource contention, architecture topologies, and energy 

consumption.   
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3.4 Ohio State University  -- D.K. Panda, P. Saddayappan 

Here we describe the on-going research accomplished by the OSU team under the 

Pmodels2 project.  The team has worked on various angles: designing high performance 

MPI implementations on modern networking technologies [Mellanox InfiniBand 

(including the new ConnectX architecture)], QLogic InfiniPath, IBM 12X InfiniBand and 

the emerging iWARP/10GigE), studying MPI scalability issues for multi-thousand node 

clusters, designing scalable collective communication libraries for emerging multi-core 

architectures, and designing MPI-level solutions to avoid congestion avoidance in multi-

core clusters.  

 

Working with PNNL, we are implementing enhancements to the GA/DRA suite, aimed at 

enhancing programmer productivity. The main foci are:  1) implementation and 

evaluation of a "work-sharing" taskpool model, and, 2) transparent interface for in-

memory and on-disk arrays (XGA). 

 

During the first year of the project, progress has been made along the following 

directions: 

 

3.4.1  MPI Implementations on Modern Networking Technologies 

 

InfiniBand is emerging as an open-standard interconnect for designing next generation 

high performance clusters.  For the last several years, OSU has been engaged in 

designing high performance MPI (MVAPICH with MPI-1 semantics and MVAPICH2 

with MPI-2 semantics) [9] for InfiniBand-based clusters.  As the InfiniBand networking 

standard matures, the next-generation of hardware are being released. Two of the 

prominent new network-interface adapters are the ConnectX architecture by Mellanox 

technologies and 12X adapter from IBM. The ConnectX architecture is geared towards 

improving communication performance and scalability on multi-core platforms. Our 

analysis in [10] reveals that latency on multi-core platforms can be improved by an order 

of magnitude, even when all cores are communicating simultaneously. IBM's 12X 

adapter is geared towards improving aggregate bandwidth and providing fail-over 

mechanisms by utilizing multiple send/receive engines. In [11], we have introduced new 



designs in the MPI library which can exploit the multiple send/receive engines in the 

IBM 12X adapter and provide optimal performance to end MPI applications.  We have 

also designed and developed an optimized implementation of MPI for QLogic's 

InfiniPath adapter.  Recently, 10GigE networks are becoming popular for cluster 

computing through the iWARP standard.  In [8], we conduct a detailed performance 

evaluation of MPI on top of state-of-the art iWARP networking stack.  

 

All these designs and solutions have been integrated into the open-source MVAPICH and 

MVAPICH2 software stacks and have been distributed to the community.  These 

software packages are currently being used by more than 580 organizations worldwide. 

These packages are also available with the Open Fabrics Enterprise Distribution (OFED) 

stack.  

 

3.4.2  Study of MPI Scalability Issues 

 

The ever increasing demand for more computational power by scientific applications has 

lead to the increase in scale of compute clusters.  Clusters with thousands of processing 

cores are already deployed and even larger clusters with tens-of-thousands of cores are in 

the planning stages. The MPI library utilized by the scientific applications should 

accordingly scale both in terms of performance delivered and resources consumed. The 

OSU team has been pursuing this direction of research. We have explored the viability of 

using the InfiniBand Unreliable Datagram as a scalable transport for MPI.  Our designs 

and experimental results presented in [2] show that the performance and resource 

consumption of the MPI library could be significantly improved at large scale (with 8K-

16K processors).  In addition, our research in using a message-coalescing approach 

geared towards reduction of memory consumption in reliable connection oriented models 

[4] reveals that significant savings in resource consumption can be obtained while not 

sacrificing end application performance. New designs including UD-based support [3] 

and hybrid UD-RC-based support [1] are being investigated to scale MVAPICH library 

to multi-thousand node clusters.   

 

3.4.3  Scalable collective communication over large scale multi-core InfiniBand 

clusters 

 

As large scale InfiniBand multi-core clusters are being increasingly deployed, several  

challenges emerge pertaining to scalability and performance of collective operations. 

Collective Communications exhibit varying communication patterns and behaviors and 

accordingly, intelligent design decisions are required which guarantee high performance 

and scalable resource usage. We have studied the implications of using different 

transports of InfiniBand such as Reliable Connection (RC) and Unreliable Datagram 

(UD). The focus of this study has been to demonstrate the semantic advantages offered 

by these transport protocols and their performance to memory trade-offs. The study 

demonstrates the significance of using Connection-Less transport over Connection-

Oriented transport for better performance and improved resource utilization. Further, the 

utility of RDMA semantics for collective operations is also studied [7].  The team has on-

going research effort for improving performance of collective operations over multi-core 



clusters.  Especially for certain collective operations, techniques such as message 

aggregation are proposed to cut-down the number of network operations and improve 

network utilization [6]. 

 

3.4.4  Congestion avoidance with InfiniBand  For clusters, fat tree has become the most 

popular interconnection topology, due to its multi-pathing capabilities. However, even 

with fat tree, hot-spots may occur in the network depending upon the route configuration 

between end nodes and communication patterns in the application. To make matters 

worse, the deterministic routing nature of InfiniBand limits the application from effective 

use of multiple paths transparently and avoid the hot-spots in the network.  To alleviate 

this situation, we have designed an MPI functionality which provides hot-spot avoidance 

for different communication patterns, without a prior knowledge of the pattern[12].  We 

have leveraged LMC (LID Mask Count) mechanism of InfiniBand to create multiple 

paths in the network, and studied its efficiency in creation of contention free routes. Our 

evaluation with NAS Parallel Benchmarks and collective communication primitives 

shows significant improvement compared to the current state-of-the-art designs. 

 

3.4.5  Prototype development of taskpool model for independent tasks  The basic 

execution model of Global Arrays (GA) in its current distribution is MPI-like, i.e. there 

are P GA processes (typically equal to the number of physical processors for execution) 

that are "long-lived" and exist through the parallel program's execution. Like an MPI 

process, each GA process also has persistent "local" state in its copy of all local variables. 

While it improves upon MPI in providing a convenient global view of large arrays, the 

above GA model does not provide any better support for load balancing than MPI - the 

programmer must do it explicitly.  In order to provide system-supported load balancing, 

the taskpools extension to the GA model is being developed.  

 

A taskpool is a set of tasks, where each task's inputs and outputs are specified as portions 

of global arrays. A task in the taskpool can perform arbitrary local computation, but using 

the GetfromGlobal+ComputeLocal+PuttoGlobal model. Thus, its input operands are all 

portions of global arrays, and its outputs specify portions of global arrays, but within the 

body of a task's code, no references to global arrays are permitted.  In the first prototype 

of taskpools, all tasks in the pool are independent.  The taskpool model was created 

primarily to provide system support for load balancing. Since the tasks explicitly specify 

the portions of global arrays that they need to copy in or update, the system can perform 

locality-aware load balancing of tasks among the processors. Affinity of processors to 

memory - with multi-core and SMP nodes - can be exploited in this load balancing 

process, without needing to impose a two-level (e.g. MPI+OpenMP) programming 

model. 

 

A prototype implementation of the taskpool model for independent tasks has been 

implemented over the GA/ ARMCI interface. A simple global lock-based dynamic load 

balancing scheme has been implemented.  Development of a hierarchical load-balancing 

scheme for SMP and multi-core systems is underway. 

 



3.4.6  Development of prototype for XGA (eXtended Global Arrays) for transparent 

access to global arrays in memory and out-of-core:  Intelligent and automated 

management of data movement is a fundamental and unifying theme for the Extended 

Global Array interface we are developing. The goal is to have a single interface for 

managing data and high level representation of the mathematical algorithms operating on 

multidimensional arrays while the details on the underlying data movement between 

secondary storage, distributed memory, shared memory, and local memory are handled 

by the XGA implementation. A key runtime functionality needed for implementation of 

XGA is asynchronous one-sided access to portions of a disk-resident array.  

 

The pre-existing DRA API only allows collective movement of data between disks and 

memory.  This has been enhanced by an asynchronous implementation for efficient non-

collective I/O (GPC-IO) as part of this framework. As a generalization of the Remote 

Procedure Call (RPC) that was used as a foundation for the Sun NFS system, we 

developed a global procedure call (GPC) to invoke procedures on a remote node to 

handle non-collective I/O.  We considered alternative approaches that could be employed 

in implementing this functionality. The approaches are evaluated using a representative 

computation from quantum chemistry. The results [5] demonstrate that GPC-IO achieves 

better absolute execution times, strong-scaling, and weak-scaling than the alternatives 

considered.  
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3.5  Pacific Northwest National Laboratory 

 

3.5.1  Ports to New Platforms. In preparation for the emerging petascale systems 

ARMCI runtime and Global Arrays toolkit have been ported to run on several new 

platforms. This includes the IBM Blue Gene/L and the Cray XT3/XT4. We have been 

collaborating with IBM and Cray to develop and optimize these ports. In addition, we 

developed a port of ARMCI to the OpenIB layer that replaces vendor-specific flavors of 

the Infiniband verbs. In an [SC’06] paper, IBM has described its port of ARMCI and 

Global Arrays for the IBM Blue Gene/L system. In addition, the IBM BG/L port, the 

version 4.0.8 of Global Arrays includes a port to the Cray XT3/XT4 systems. These ports 

enable DoE codes such as the NWChem computational chemistry package and 

ScalaBLAST bioinformatics application and several other scientific codes that use 

ARMCI and the Global Arrays toolkit to run on these systems at a large scale. As 

described in the recent paper in Journal of Chemical Theory and Computation (vol. 3 no. 

2, 2007), performance of Molecular Dynamics Simulations to Sample Free-Energy States 
has shown significant improvement with Global Arrays toolkit and potential of this 

method to scale to several thousands of processors.  

 

3.5.2  Global Procedure Calls (GPC). We have been developing a mechanism enabling 

users to ship computations to be executed remotely on global address space data. This 



capability extends ARMCI data movement operations that support global address 

programming models. GPC can be thought of as an extension of the traditional Remote 

Procedure Calls (RPC) to parallel processing environments with global address space. 

Unlike most implementations of RPC and Active Messages, GPC provides truly 

unilateral progress model without relying on implicit or explicit polling. Its 

implementation relies on the shared memory and threads to achieve high performance. 

Memory bandwidth is the most constrained system resource on the current multicore 

processors. To eliminate memory copies that waste memory bandwidth our 

implementation uses shared memory. In addition to saving bandwidth in the GPC 

implementation, shared memory is the fastest available communication protocol on 

multicore and multiprocessor SMP nodes. The globally addressable memory allocated by 

ARMCI from the operating system is shared memory. It allows execution of GPC within 

multicore or SMP multiprocessor nodes without any intermediate memory copies. We 

have prototyped a nonblocking execution model of GPC callbacks to support I/O and 

increase responsiveness. In addition, we have also been considering requirements of 

emerging DARPA languages like the IBM X10 and Cray Chapel in development of GPC.   

 

3.5.3  Thread Safe ARMCI  The growing importance of multicore systems led to 

renewed interests in multithreaded rather than multiprocess execution models. 

Multithreaded execution model has been used in te implementation of OpenMP as well as 

it is default for new programming models such as X10. During last year, we have 

redesigned the internal implementation protocols in ARMCI to make ARMCI thread safe. 

In particular, this required modifications to the buffer management layers used in 

implementation of atomic and one-sided communication operations with noncontiguous 

interfaces that involve intermediate packing of the data. Our objective has been to 

maximize communication concurrency and minimize memory consumption by allowing 

a thread to process and complete network communication calls even when initiated by 

another thread. In addition, the underlying implementation of blocking communication 

calls in ARMCI has been revised to prevent any single thread locking while waiting for 

network communication calls which would delay other threads ability to initiate network 

communication or in some applications would even lead to deadlocks. Initial evaluation 

of the thread-safe ARMCI using application benchmarks such as the SPLASH LU 

indicate the multiprocess and multithreaded implementations have the same performance. 

 

3.5.4  Advanced Global Data Structures  The Global Arrays library supports the dense 

multidimensional arrays with global view. Although this abstraction can be used to 

implement other data structures including sparse arrays, certain application areas require 

more advanced data structures like linked lists or hash maps with global view and 

independent, one-sided access. The global hash map can be asynchronously accessed 

(insert/update); however it is physically distributed among processes. An example of such 

an application is text processing engine in visual analytics area. The hash map 

distribution among processes is based on the hash value of the input. A global hash map 

is created collectively by all processes to store the unique terms (i.e. strings) and generate 

a global term IDs for each term inserted into the hash map. GPCs have been used to 

implement scalable distributed hash maps. They have been employed in the first ever 



scalable implementation of the visual analytics text processing engine of the INSPIRE 

application.   

 

3.5.5  One-Sided Access Model to Disk Resident Arrays  As a part of the PModels 

project, we are developing an integrated programming model that supports out-of-core 

computations. The goal is to extend the one-sided access to globally addressable data to 

the secondary storage systems. The goals of the eXtensible Global Arrays (XGA) is 

combine the Global Arrays and Disk Resident Arrays into a single programming 

abstraction and relieve the programmer from the burden of explicit orchestration of data 

movements between in-core and out-of core storage. To advance toward this goal, we 

have been developing a noncollective, one-sided access to data in the secondary storage 

(Disk Resident Arrays). This capability follows the get/put style of communication for 

the distributed memory data. The main challenge is due to the fact that Disk Resident 

Arrays are implemented on top of collection of local disks in the cluster computing nodes 

and not just parallel filesystems. As described in the Cluster’07 paper, we addressed this 

requirement by developing remote read/write operations using GPC. 
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3.6  Rice University – John Mellor-Crummey 

 

Rice researchers continue to explore the interaction of threads and Co-Array Fortran on 

leadership-class machines. 

 

3.6.1  Overview.  The highest priority goal of research and development efforts of the 

PModels team at Rice University has been to refine a version of Rice’s cafc Co-array 

Fortran compiler for use on the DOE leadership-class machines. In early June 2007, the 

Rice team completed an initial port of the cafc compiler and runtime system to ORNL’s 

leadership-class Cray XT platform and successfully executed CAF implementations of 

the NAS MG, CG, and LU parallel benchmarks. Currently, the cafc runtime system is 

using the GASNet 1.8.0 runtime layer. A limitation of this early release of GASNet for 

the Cray XT platform is that it limits the size of shared memory segments mapped on 

each node to 110MB, which limits our ability to test codes that manipulate large-scale 

data such as CAF implementations of HPC Challenge codes developed in the fall of 

2006. Ongoing implementation work at Rice is aimed at improving the CAF language 

coverage along with the scalability and robustness of the run-time system.  Ongoing 

research has focused on support to improve the expressiveness and performance of CAF.  

We have developed prototype language and run-time support for function shipping, 

structured teams, multiversion variables for producer-consumer communication, and 

process topologies. We are beginning to explore using software transactional memory as 

a mechanism to implement atomic actions for synchronization on distributed-memory 

multicore platforms. 

 

3.6.2  Introduction  As part of the Center for Programming Models for Scalable Parallel 

Computing, Rice University is collaborating with project partners in the design, 

development and deployment of language, compiler, and runtime support for parallel 

programming models to support application development for the “leadership-class” 

computer systems at DOE national laboratories.  A principal goal of work at Rice 

University is refinement of the Co-array Fortran programming language, compiler and 

runtime so that it is expressive (natural for expressing a broad spectrum of algorithms, 

constructing efficient parallel data structures, and supporting both static and dynamic 

strategies for decomposing work), productive (programs are as easy to write as possible), 

high performance (across the spectrum of computing platforms ranging from commodity 

clusters  to  leadership-class  systems), scalable to leadership-class computer systems 

with tens to hundreds of thousands of processors, portable, and  interoperable with other 

programming models,  as well as program development tools. A secondary goal of this 

effort is to develop new compiler technology that will support higher-level “global view” 

parallel programming models.  Over the term of the award, the work at Rice University 

will focus on the following themes: 

 



• Refinement of language-based parallel programming models for emerging 

platforms.  Rice will collaborate with members of the project team to refine 

existing designs for language-based global address space parallel programming 

models. This effort will focus on scaling such programming models to systems of 

10,000 or more processors and effectively exploiting hardware threading on 

multi-core processors. Rice will lead the design of refinements to Co-array 

Fortran (CAF).  

• Refinement of language-based programming models for higher performance and 

better expressiveness.  Rice will collaborate with members of the project team  in 

refining language-based global address space programming models so that they 

are natural for expressing a broad spectrum of algorithms and parallelization 

styles, as well as exploring language constructs that simplify achieving high 

performance by minimizing exposed communication latency. Another important 

goal of this work is to refine CAF so that it can be compiled into efficient code for 

a wide range of parallel platforms. 

• Investigation of compiler technology for global view parallel programs.  Rice will 

lead the investigation of techniques for compiling global view languages into 

efficient programs for scalable distributed-memory parallel systems. This 

investigation will focus on the design and evaluation of compiler technology for 

analyzing and optimizing programs by manipulating symbolically-parameterized 

descriptions of data, computation and communication. The aim of this work is to 

support parallel programming models with a higher level of abstraction. 

• Interoperability of parallel programming models.  Rice will work with members 

of the project team to refine run-time systems and application programming 

interfaces as necessary to make Co-array Fortran interoperable with other 

language and library-based models for parallel programming. 

• Integration with programming environments and tools.  Rice will work with 

members of the project team to develop strategies that enable language-based 

parallel programming models to interoperate with programming environments 

along with tools for debugging and performance analysis.  

 

Rice will design, develop, and deploy open-source software that embodies the results of 

this research and development. 

 

7.1.3 Technical Accomplishments 

 

Rice University's FY2007 accomplishments as part of the Center for Programming 

Models for Scalable Parallel Computing include: 

 

• CAF implementation. We ported Rice's cafc compiler and run-time system to 

Jaguar, the leadership-class Cray XT platform at Oak Ridge National Laboratory.  

• Graduate education.  Two members of the Co-array Fortran project team, Yuri 

Dotsenko and Cristian Coarfa, completed their Ph.D. dissertations, which 

explored the design and implementation of compiler and runtime support for Co-

array Fortran[1, 3]. This research was begun under support from the DOE under 



the PModels project and completed at the end of January 2007 with support from 

this project. 

• CAF language, compiler, and runtime system research.  As Dotsenko finished up 

his dissertation, we finished prototyping and evaluation of compiler and run-time 

support for function shipping, structured teams, multiversion variables for 

producer-consumer communication, and process toplogies. The results of this 

effort are detailed in his dissertation [3].  

• Synchronization support for multithreaded runtime systems.  We began 

exploration of strategies to make software transactional memory efficient enough 

for providing atomicity within a multi-threaded runtime on leadership-class 

machines. 

• Exploring CAF expressiveness and performance.  We designed and developed 

preliminary CAF versions of HPC Challenge benchmarks:  RandomAccess, FFT, 

and streams. A student project recently yielded a draft of a blocked version of LU 

decomposition in CAF. 

• Work on compiler technology for global view languages.  We began exploring 

extentions to  analysis and code generation techniques using polyhedral methods 

to partition computation efficiently for complex iteration spaces.  

 

The prototype Co-array Fortran compiler cafc developed in with support from the DOE 

Office of Science as part of the PModels project is available as open source software  

from http://www.hipersoft.rice.edu/caf.  Research and development results from this 

cooperative agreement are being delivered as enhancements to this software. 

 

3.6.4  CAF Implementation  The highest priority goal of our development efforts has 

been to port Rice's cafc compiler to the DOE leadership-class machines. In early June 

2007, we completed an initial port of the cafc compiler and runtime system to ORNL's 

leadership-class Cray XT platform and successfully executed CAF implementations  the 

NAS MG and CG parallel benchmarks.  Experiments with other codes indicate that 

additional debugging is needed. 

 

Porting to this platform involved modifying the cafc compiler runtime system to 

interoperate with PGI's Fortran 90 compiler. To support efficient communication, cafc 

's runtime system must manage shared data (co-arrays) differently from other data 

managed by the Fortran 90 runtime system. For this reason, the cafc runtime delegates 

allocation of shared data to the GASNet or ARMCI communication libraries and then 

initializes Fortran 90 pointers so that this shared data  can be manipulated efficiently from 

within Fortran.  

 

Currently, the cafc runtime system is using the GASNet 1.8.0 runtime layer. On the 

Cray XT3/4 platform, this GASNet release relies on MPI for communication. A version 

of GASNet that uses Catamount's Portals communication layer directly is undergoing 

testing and debugging by our collaborators at UC Berkeley. That version will provide 

enhanced performance and we will migrate to it when our collaborators notify us that it is 

ready for external use. 

 



3.6.5  Synchronization support for multithreaded runtime systems  At present, a 

weakness of CAF is that it lacks adequate support for coordinating multithreaded 

computations on multicore processors. Lock-based synchronization is currently the 

most popular mechanism for synchronizing multithreaded computations. On distributed 

memory systems, acquiring locks on remote data and then manipulating remote data 

structures with PUT and GET primitives will lead to poor performance. In addition, lock-

based problems often suffer from problems such as deadlock, priority inversion and 

convoying.  We are interested in extending CAF with atomic actions to avoid such 

problems. 

 

Software Transactional Memory (STM) is a promising technique for supporting atomic 

actions in multithreaded  programs. STM  provides a higher level synchronization 

abstraction than locks,  the underlying synchronization is managed by a runtime system 

transparent to the programmer; and deadlocks, priority inversions and convoying cannot 

happen. If STM is to be useful in HPC applications, its overhead must be low. 

 

Two major issues in software transactional memory implementation are conflict detection 

and validation. Conflict detection discovers the cases where two transactions perform two 

operations on an object at the same time and at least one of the operations is a write. 

Validation is a technique that detects harmful inconsistencies  

in the global memory state. To reduce the overhead of STM, we have developed a low-

overhead validation strategy. 
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3.6.6  Plans 

While the research and development of both the CAF language and compiler technology 

for PGAS languages has demonstrated that CAF can be used to achieve high performance 

on clusters, significant additional work is needed before CAF an attractive technology for 

computational scientists. Several issues need significant attention.  

 

3.6.7  Implementation issues. When constructing an implementation of a blocked 

parallel version of LU factorization, three implementation issues were identified as 

impediments to user productivity.  First, cafc needs support for co-array variables as 

part of Fortran 90/95 modules.  Second, cafc needs enhanced support for inheriting 

implicit procedure interfaces for procedures that manipulate co-arrays.  Third, cafc 

 



needs to support application of Fortran 90 intrinsic functions to co-array data.  Our plan is 

to address these issues as soon as we have a functioning prototype of cafc working on 

the ORNL's leadership-class machine based on the Cray XT architecture. 

 

3.6.8  Enhanced support for manipulating remote data.  Currently, CAF supports an 

MPI-like model for SPMD programming. For CAF to support a broader range of 

application styles, it needs better support for manipulation of remote data and more 

flexible data-oriented synchronization. Enhancing the expressiveness of synchronization 

is a focus of our CAF language refinement effort as part  this project.  

 

3.6.9  Memory model.  As we continue our exploration of advanced features in the CAF 

runtime (including support for atomic actions based on software transactional memory), 

an important task will be for us to define a memory model that will precisely describe the 

language semantics in the presence of function shipping and multithreading. The memory 

model must be natural for application programmers to understand and use, yet also not 

unnecessarily hobble performance. 

 

3.6.10  Function shipping. We need to explore function shipping and multithreading on 

the leadership-class machines. Support for threading recently became available as the 

operating system on this machine was upgraded to Compute Node Linux. We need to 

precisely define what semantic guarantees about threading that the CAF language should 

provide to an application developer with function shipping. 
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4.  Crosscutting Plans 

 

In addition to the plans described by the individual institutions, two project-wide 

initiatives are in the planning state. 

 

• The idea of a common communication subsystem API definition is being 

explored with a number of those attending the MPI Forum meetings.  This is 

relevant to MPI and GA implementations and also to PGAS language 

implementations. 

• The HPCS language project sponsored by DARPA was terminated this year.  We 

hope to revive the cooperative approach obvious at the last meeting under the 

auspices of Pmodels.  The HPCS languages represent the “third wave” of 



programming models and languages, where the first two waves are libraries (MPI 

and Global Arrays) and PGAS languages (UPC, CAF, and Titanium). 

 

 


